User Tools

Site Tools


foundationsqc

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
foundationsqc [2016/05/10 18:03] – [Alternative models for quantum computation] infopticsfoundationsqc [2018/11/09 20:42] (current) – external edit 127.0.0.1
Line 4: Line 4:
  
 =====Quantum annealing and adiabatic quantum computation===== =====Quantum annealing and adiabatic quantum computation=====
-{{ ::line-2-ref-2.png?300|}}+
 The aim of this research area is to investigate quantum information processing and simulation of quantum dynamics through quantum annealing methods, either in closed or open systems. More specifically, we focus on the adiabatic computation approach, which aims at manipulating a slowly-varying quantum system to attain a desired target state, which contains the solution of a computational problem. Topics of interest include adiabatic algorithms and their physical implementations, adiabatic approximation in open quantum systems, and shortcut methods to adiabaticity. The aim of this research area is to investigate quantum information processing and simulation of quantum dynamics through quantum annealing methods, either in closed or open systems. More specifically, we focus on the adiabatic computation approach, which aims at manipulating a slowly-varying quantum system to attain a desired target state, which contains the solution of a computational problem. Topics of interest include adiabatic algorithms and their physical implementations, adiabatic approximation in open quantum systems, and shortcut methods to adiabaticity.
 \\ \\
-Recent publications:\\ 
 \\ \\
-(1) I. Hen, M. S. Sarandy, "Driver Hamiltonians for constrained +{{ ::line-2-ref-1b.jpg?250|}} 
-optimization in quantum annealing", arXiv:1602.07942 (2016).\\ +Selected publications:\\ 
-(2) A. C. Santos, R. D. Silva, M. S. Sarandy, "Shortcut to adiabatic +\\ 
-gate teleportation", Phys. Rev. A 93, 012311 (2016).\\ +I. Hen, M. S. Sarandy, [[http://arxiv.org/abs/1602.07942|Driver Hamiltonians for constrained 
-(3) A. C. Santos, M. S. Sarandy, "Superadiabatic Controlled Evolutions +optimization in quantum annealing]], arXiv:1602.07942 (2016).\\ 
-and Universal Quantum Computation", Sci. Rep. 5, 15775 (2015).\\ +A. C. Santos, R. D. Silva, M. S. Sarandy,  
-(4) M. Herrera, M. S. Sarandy, E. I. Duzzioni, R. M. Serra, +[[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.012311|Shortcut to adiabatic 
-"Nonadiabatic quantum state engineering driven by fast quench +gate teleportation]]//Phys. Rev. A // **93**, 012311 (2016).\\ 
-dynamics", Phys. Rev. A 89, 022323 (2014).\\+A. C. Santos, M. S. Sarandy, {{ ::line-2-ref-2.png?250|}} 
 +[[http://www.nature.com/articles/srep15775|Superadiabatic Controlled Evolutions 
 +and Universal Quantum Computation]]//Sci. Rep. // **5**, 15775 (2015).\\  
 +M. Herrera, M. S. Sarandy, E. I. Duzzioni, R. M. Serra,  
 +[[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.022323| 
 +Nonadiabatic quantum state engineering driven by fast quench 
 +dynamics]]// Phys. Rev. A // **89**, 022323 (2014).\\ 
 ===== Random circuits for quantum computation ===== ===== Random circuits for quantum computation =====
 {{ randomu.png?200}} {{ randomu.png?200}}
foundationsqc.1462903405.txt.gz · Last modified: 2018/11/09 20:42 (external edit)