User Tools

Site Tools



This shows you the differences between two versions of the page.

Link to this comparison view

foundationsqc [2016/05/10 14:58]
foundationsqc [2018/11/09 18:42]
Line 1: Line 1:
-====== Foundations of quantum computation ====== 
-This research is led by profs. [[people:​daniel|Daniel Jonathan]], [[people:​ernesto|Ernesto F. Galvão]] and [[people:​sarandy|Marcelo Sarandy]]. 
-=====Quantum annealing and adiabatic quantum computation===== 
-The aim of this research area is to investigate quantum information processing and simulation of quantum dynamics through quantum annealing methods, either in closed or open systems. More specifically,​ we focus on the adiabatic computation approach, which aims at manipulating a slowly-varying quantum system to attain a desired target state, which contains the solution of a computational problem. Topics of interest include adiabatic algorithms and their physical implementations,​ adiabatic approximation in open quantum systems, and shortcut methods to adiabaticity. 
-Recent publications:​\\ 
-(1) I. Hen, M. S. Sarandy, "​Driver Hamiltonians for constrained 
-optimization in quantum annealing",​ arXiv:​1602.07942 (2016).\\ 
-(2) A. C. Santos, R. D. Silva, M. S. Sarandy, "​Shortcut to adiabatic 
-gate teleportation",​ Phys. Rev. A 93, 012311 (2016).\\ 
-(3) A. C. Santos, M. S. Sarandy, "​Superadiabatic Controlled Evolutions 
-and Universal Quantum Computation",​ Sci. Rep. 5, 15775 (2015).\\ 
-(4) M. Herrera, M. S. Sarandy, E. I. Duzzioni, R. M. Serra, 
-"​Nonadiabatic quantum state engineering driven by fast quench 
-dynamics",​ Phys. Rev. A 89, 022323 (2014).\\ 
-===== Random circuits for quantum computation ===== 
-{{ randomu.png?​200}} 
-   * Pseudo-random ensembles of unitaries and how they converge towards a uniform distribution. 
-   * Characterizing physically the non-local character of two-qubit gates 
-Recent papers:\\ 
-Comment on the paper "​Random Quantum Circuits are Approximate 2-designs"​. Diniz, Jonathan, //Comm. Math. Phys.//304, 281–293 (2011). Preprint [[http://​​abs/​1006.4202|arXiv:​1006.4202v1]] 
-===== Alternative models for quantum computation ===== 
-{{ fig2.png?​200}} 
-   * Measurement-based quantum computation 
-   * Simulability results for restricted classes of quantum computation 
-   * Experimental implementations of photonic quantum computers 
-Recent papers:\\ 
-[[http://​​abs/​1505.03708|Experimental scattershot boson sampling]]. [[http://​​content/​1/​3/​e1400255|Science Advances 1 (3), e1400255 (2015)]].\\ 
-[[http://​​abs/​1311.1622|Experimental validation of photonic boson sampling]], [[http://​​nphoton/​journal/​v8/​n8/​full/​nphoton.2014.135.html|Nature Photonics 8, 615–620 (2014)]].\\ 
-[[http://​​abs/​1305.3188|General rules for bosonic bunching in multimode interferometers]],​ //​[[http://​​prl/​abstract/​10.1103/​PhysRevLett.111.130503|Phys. Rev. Lett. 111, 130503 (2013)]]\\ 
-[[http://​​abs/​1212.2783|Integrated multimode interferometers with arbitrary designs for photonic boson sampling]], Crespi et al., [[http://​​nphoton/​journal/​v7/​n7/​full/​nphoton.2013.112.html|Nature Photonics 7, 545–549 (2013)]].\\ 
-[[http://​​abs/​1207.2126|Geometries for universal quantum computation with matchgates]]. Brod, Galvão, //Phys. Rev. A// 86, 052307 (2012).\\ 
-[[http://​​abs/​1003.4971|Closed timelike curves in measurement-based quantum computation.]] Dias da Silva, Galvão, Kashefi ; //Phys. Rev. A// **83**, 012316 (2011). 
foundationsqc.txt · Last modified: 2018/11/09 18:42 (external edit)